3. Mysql进阶
3.1 存储引擎
mysql体系结构图
连接层
最上层是一些客户端和链接服务,主要完成一些类似于连接处理、授权认证、及相关的安全方案。服务器也会为安全接入的每个客户端验证它所具有的操作权限。
服务层
第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。
引擎层
存储引擎真正的负责了MVSOL中数据的存储和提取,服务器通过API和存储引擎进行通信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。
存储层
主要是将数据存储在文件系统之上,并完成与存储引擎的交互。
-- 查询建表语句
show create table account;
-- 查询当前数据库支持的存储引擎
show engines;
-- 创建表my_mysiam ,并指定myisam存储引擎
create table my_myisam(
id int,
name varchar(10)
) engine =MyISAM;
-- 创建表my_memory ,并指定myisam存储引擎
create table my_memory(
id int,
name varchar(10)
) engine =MEMORY;
如果没有指定存储引擎的话,mysql默认的innodb。
下面就是mysql支持的默认引擎
存储引擎特点
Innodb
InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在MySQL5.5之后,InnoDB是默认的 MySQL 存储引擎。
特点
- DML操作遵循ACID模型,支持事务
- 行级锁,提高并发访问性能;
- 支持外键 FOREIGN KEY约束,保证数据的完整性和正确性;
文件存储位置
xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)、 数据和索引。参数:innodb file per table
-- 查看每张表 是否存储
show variables like 'innodb_file_per_table';
select @@innodb_file_per_table;
如何查看里面的结构呢?
逻辑存储结构
一个extent的大小是固定为1mb。一个page的大小也是固定的16kb。一个extent中可以包含64个
MyISAM介绍
MyISAM是MySQL早期的默认存储引擎。
特点
- 不支持事务,不支持外键
- 支持表锁,不支持行锁
- 访问速度快
存储文件
- xxx.sdi:存储表结构信息
- xxx.MYD:存储数据
- xxx.MYI:存储索引
Memoey
Memory引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为临时表或缓存使用。
内存存放
hash索引(默认)
xxx.sdi:存储表结构信息
总结
Innodb | MyISAM | Memoey | |
---|---|---|---|
介绍 | InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在MySQL5.5之后,InnoDB是默认的 MySQL 存储引擎。 | MyISAM是MySQL早期的默认存储引擎。 | Memory引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为临时表或缓存使用。 |
特点 | DML操作遵循ACID模型,支持事务 行级锁,提高并发访问性能; 支持外键 FOREIGN KEY约束,保证数据的完整性和正确性; | 不支持事务,不支持外键 支持表锁,不支持行锁 访问速度快 | 内存存放 hash索引(默认) |
文件存储位置 | xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)、 数据和索引。 参数:innodb file per table | xxx.sdi:存储表结构信息 xxx.MYD:存储数据 xxx.MYI:存储索引 | xxx.sdi:存储表结构信息 |
特点 | InnoDB | MyISAM | Memory |
---|---|---|---|
存储限制 | 64TB | 有 | 有 |
事务安全 | 支持 | - | |
锁机制 | 行锁 | 表锁 | 表锁 |
B+tree索引 | 支持 | 支持 | 支持 |
Hash索引 | 支持 | ||
全文索引 | 支持(5.6以后) | 支持 | |
空间使用 | 高 | 低 | N/A |
内存使用 | 高 | 低 | 中等 |
批量插入速度 | 低 | 高 | 高 |
支持外键 | 支持 |
存储的引擎的应用
- InnoDB:是Mysq!的默认存储引擎,支持事务、外键。如果应用对事务的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操作,那么InnoD8存储引擎是比较合适的选择。
- MyISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。
- MEMORY:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。MEMORY的缺陷就是对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性。
3.2 索引
3.2.1 索引概述
索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
为什么需要索引呢?
优势 | 劣势 |
---|---|
提高数据检索的效率,降低数据库的I0成本 | 索引列也是要占用空间的。 |
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。 | 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低。 |
3.2.2 索引结构
索引结构 | 描述 |
---|---|
B+Tree索引 | 最常见的索引类型,大部分引擎都支持 B+树索引 |
Hash索引 | 底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询 |
R-tree(空间索引) | 空间索引是MVISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES |
二叉树
二叉树缺点:顺序插入时,会形成一个链表,查询性能大大降低。大数据量情况下,层级较深,检索速度慢。
红黑树
使用红黑树解决第一个问题
B-Trees
为了解决上述问题,可以使用 B-Tree 结构。 B-Tree (多路平衡查找树) 以一棵最大度数(max-degree,指一个节点的子节点个数)为5(5阶)的 b-tree 为例(每个节点最多存储4个key,5个指针)
B-Tree 的数据插入过程: B-Tree Visualization (usfca.edu)
B+Tree
与 B-Tree 的区别:
- 所有的数据都会出现在叶子节点
- 叶子节点形成一个单向链表
MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。
Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
Hash索引特点
- Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,<,..)
- 无法利用索引完成排序操作
- 查询效率高,通常只需要一次检索就可以了,效率通常要高于B+tree索引
在MySQL中,支持hash索引的是Memory引擎,而innoDB中具有自适应hash功能,hash索引是存储引擎根据B+Tree索引在指定条件下自动构建的。
3.2.3 索引分类
分类 | 含义 | 特点 | 关键字 |
---|---|---|---|
主键索引 | 针对于表中主键创建的索引 | 默认自动创建,只能有一个 | PRIMARY |
唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
常规索引 | 快速定位特定数据 | 可以有多个 | |
全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | FULLTEXT |
在 InnoDB 存储引擎中,根据索引的存储形式
,又可以分为以下两种:
分类 | 含义 | 特点 |
---|---|---|
聚集索引(Clustered Index) | 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
演示图:
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引
- 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引
以下 SQL 语句,哪个执行效率高?为什么?
sqlselect * from user where id = 10; select * from user where name = 'Arm'; -- 备注:id为主键,name字段创建的有索引
答:第一条语句,因为第二条需要回表查询,相当于两个步骤。
InnoDB 主键索引的 B+Tree 高度为多少?
答:假设一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8. 可得公式:
n * 8 + (n + 1) * 6 = 16 * 1024
,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的key的数量,(n + 1) 表示指针数量(比key多一个)。算出n约为1170。如果树的高度为2,那么他能存储的数据量大概为:
1171 * 16 = 18736
; 如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856
。另外,如果有成千上万的数据,那么就要考虑分表,涉及运维篇知识。
3.2.4 索引语法
名称 | 语法 |
---|---|
创建索引 | `CREATE [ UNIQUE |
查看索引 | SHOW INDEX FROM table_name; |
删除索引 | DROP INDEX index_name ON table_name; |
案例
准备数据sql
CREATE TABLE tb_user (
id INT AUTO_INCREMENT PRIMARY KEY COMMENT '主键',
name VARCHAR(10) NOT NULL COMMENT '姓名',
phone VARCHAR(20) NOT NULL COMMENT '电话',
email VARCHAR(50) NOT NULL COMMENT '邮箱',
profession VARCHAR(20) NOT NULL COMMENT '专业信息',
age INT NOT NULL COMMENT '年龄',
gender CHAR(1) NOT NULL COMMENT '性别',
status CHAR(1) DEFAULT '1' NOT NULL COMMENT '状态',
create_time DATETIME DEFAULT CURRENT_TIMESTAMP NOT NULL COMMENT '创建时间'
) COMMENT='用户信息表';
INSERT INTO tb_user (name, phone, email, profession, age, gender, status, create_time) VALUES
('Alice', '1234567890', 'alice@example.com', 'Engineer', 30, 'F', '1', NOW()),
('Bob', '2345678901', 'bob@example.com', 'Doctor', 35, 'M', '1', NOW()),
('Charlie', '3456789012', 'charlie@example.com', 'Teacher', 28, 'M', '1', NOW()),
('David', '4567890123', 'david@example.com', 'Lawyer', 40, 'M', '1', NOW()),
('Eva', '5678901234', 'eva@example.com', 'Architect', 32, 'F', '1', NOW()),
('Frank', '6789012345', 'frank@example.com', 'Artist', 27, 'M', '1', NOW()),
('Grace', '7890123456', 'grace@example.com', 'Scientist', 29, 'F', '1', NOW()),
('Hank', '8901234567', 'hank@example.com', 'Chef', 45, 'M', '1', NOW()),
('Ivy', '9012345678', 'ivy@example.com', 'Designer', 26, 'F', '1', NOW()),
('Jack', '0123456789', 'jack@example.com', 'Manager', 33, 'M', '1', NOW());
查询指定表的索引
-- 查询指定表的索引
show index from tb_user;
完成需求的sql
-- name字段为姓名字段,该字段的值可能会重复,为该字段创建索引
create index idx_my_user_name on tb_user(name);
-- phone手机号字段的值非空,且唯一,为该字段创建唯一索引
create unique index idx_user_phone on tb_user (phone);
-- 为profession, age, status创建联合索引
create index idx_user_pro_age_stat on tb_user(profession, age, status);
-- 为email建立合适的索引来提升查询效率
create index idx_user_email on tb_user(email);
-- 删除索引
drop index idx_user_email on tb_user;
3.2.5 SQL性能分析
1) 了解执行频次
MySQL 客户端连接成功后,通过show [sessioniglobal status命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
SHOW GLOBAL STATUS LIKE 'Com_______'
返回结果
如果再次执行查询命令,就可以看到 查询次数增加了
2) 慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
-- 查询慢查询日志是否开启
show variables like 'slow_query_log';
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置慢日志的时间为2秒,SOL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2
配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息/var/lib/mysql/localhost-slow.log
。
案例
准备数据。使用sql 创建10万条数据。
CREATE TABLE tb_sku
(
id INT AUTO_INCREMENT PRIMARY KEY COMMENT '主键',
name VARCHAR(100) COMMENT '姓名',
phone VARCHAR(200) COMMENT '电话'
) comment '慢查询日志表';
DELIMITER $$
CREATE PROCEDURE InsertMillionRows()
BEGIN
DECLARE i INT DEFAULT 1;
WHILE i <= 100000 DO
INSERT INTO tb_sku (name, phone) VALUES
(CONCAT('Name', i), CONCAT('1234567890', i MOD 10000));
SET i = i + 1;
END WHILE;
END $$
DELIMITER ;
CALL InsertMillionRows();
手动创建一个慢查询日志
select count(*) from tb_sku;
windows怎么查看呢??
点开my.ini。修改query_time=1。不然很难捕捉到慢查询日志
然后就可以发现慢查询日志的名字了
这里是因为执行了插入语句,大概20几分钟。所以有慢查询的日志记录
查询10万条数据,大概在0.04s左右。估计得1000万条数据,才能到底1s以上。
3) profile详情
show profile 能在做SQL优化时帮我们了解时间都耗费在哪里。通过 have_profiling 参数,能看到当前 MySQL 是否支持 profile 操作:
SELECT @@have_profiling;
profiling 默认关闭,可以通过set语句在session/global级别开启 profiling:
SELECT @@profiling;
SET profiling = 1;
查看所有语句的耗时:
show profiles;
查看指定query_id的SQL语句各个阶段的耗时:
show profile for query query_id
查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
案例
select * from tb_user;
select * from tb_user where id=1;
select * from tb_user where name='Amy';
show profiles;
show profile for query 54;
就可以看到 每个阶段sql执行的时间
4) explain
EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。 语法:
# 直接在select语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 HWERE 条件;
执行案例sql
explain select * from tb_user where id=1;
EXPLAIN 各字段含义:
id:select 查询的序列号,表示查询中执行 select 子句或者操作表的顺序(id相同,执行顺序从上到下;id不同,值越大越先执行)
select_type:表示 SELECT 的类型,常见取值有 SIMPLE(简单表,即不适用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
type:表示连接类型,性能由好到差的连接类型为 NULL、system、const、eq_ref、ref、range、index、all
sqlexplain select 'A';
这种情况下,不访问任何表,才是null
all表示全表扫描
possible_key:可能应用在这张表上的索引,一个或多个
Key:实际使用的索引,如果为 NULL,则没有使用索引
Key_len:表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好
rows:MySQL认为必须要执行的行数,在InnoDB引擎的表中,是一个估计值,可能并不总是准确的
filtered:表示返回结果的行数占需读取行数的百分比,filtered的值越大越好
案例
准备数据sql
# 课程表与学生表
# 创建学生表
CREATE TABLE students (
student_id INT PRIMARY KEY COMMENT '主键',
student_name VARCHAR(50) COMMENT '学生姓名',
student_number char(3) UNIQUE NOT NULL COMMENT '学号'
);
INSERT INTO students(student_id, student_name, student_number) VALUES(1,'张三','201'),
(2,'李四','202'),
(3,'王五','203'),
(4,'翠花','204'),
(5,'小妖怪','205');
# 创建课程表
CREATE TABLE courses (
course_id INT PRIMARY KEY COMMENT '主键',
course_name VARCHAR(50) UNIQUE COMMENT '课程名称'
);
INSERT INTO courses(course_id, course_name) VALUES(1,'人工智能'),
(2,'java'),
(3,'php'),
(4,'spark'),
(5,'hadoop');
-- 达到以上的步骤之后,我们的学生表和课程表,之后,很显然我们的不能看到什么关系,这个时候就需要借助第三方表,形成类似于一种映射,拉链的形式绑定起来
CREATE TABLE student_course(
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '主键',
student_id INT COMMENT '学生ID',
course_id INT COMMENT '课程ID',
CONSTRAINT fk_student_id FOREIGN KEY (student_id) REFERENCES students(student_id),
CONSTRAINT fk_course_id FOREIGN KEY (course_id) REFERENCES courses(course_id)
);
INSERT INTO student_course(student_id, course_id) VALUES(1,2),
(1,3),
(1,1),
(2,3),
(3,3),
(2,1);
然后右键查看几个表之间的关系
执行sql
select s.* ,c.* from students s,courses c ,student_course sc where s.student_id =sc.student_id and c.course_id=sc.course_id;
会出现这样子的结果
explain select s.* ,c.* from students s,courses c ,student_course sc where s.student_id =sc.student_id and c.course_id=sc.course_id;
接下来,我们查找了学习了java课程的学员名称
select * from students s where s.student_id in (select student_id from student_course sc where sc.course_id =(select course_id from courses c where c.course_name='java'));
我们来查看执行计划
explain select * from students s where s.student_id in (select student_id from student_course sc where sc.course_id =(select course_id from courses c where c.course_name='java'));
3.2.6 索引使用
案例
-- 开始计时
SET @start_time = NOW(6);
-- 执行查询
select * from mytest.tb_sku where id=8888;
-- 结束计时
SET @end_time = NOW(6);
-- 计算执行时间
SELECT TIMESTAMPDIFF(MICROSECOND, @start_time, @end_time)/1000000 AS execution_time_seconds;
10万条数据中,大概需要-0.0755秒
然后呢?我们使用name字段,目前,name字段没有添加索引
-- 开始计时
SET @start_time = NOW(6);
-- 执行查询
select * from tb_sku where tb_sku.name='Name17';
-- 结束计时
SET @end_time = NOW(6);
-- 计算执行时间
SELECT TIMESTAMPDIFF(MICROSECOND, @start_time, @end_time)/1000000 AS execution_time_seconds;
从10万条数据中,查询需要0.4561秒。时间还是比较长的。
这种方式比较传统。我们可以换一种方式计算时间。定义一个函数过程
DELIMITER //
CREATE PROCEDURE measure_query_second(IN sql_query TEXT)
BEGIN
DECLARE start_time DATETIME(6);
DECLARE end_time DATETIME(6);
DECLARE query_stmt VARCHAR(1024);
-- 计算执行时间(微秒级别)
DECLARE execution_time_microseconds BIGINT;
SET start_time = NOW(6);
-- 动态执行传入的 SQL 查询
SET @query_stmt = sql_query;
PREPARE stmt FROM @query_stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
SET end_time = NOW(6);
SET execution_time_microseconds = TIMESTAMPDIFF(MICROSECOND, start_time, end_time);
-- 将微秒转换为秒,并保留6位小数
SELECT FORMAT(execution_time_microseconds / 1000000, 6) AS execution_time_seconds;
END //
DELIMITER ;
调用函数
-- 调用存储过程,传入一个 SQL 查询
CALL measure_query_second('SELECT * FROM tb_sku WHERE id = 8888');
10万条数据,大概在0.0002秒
CALL measure_query_second('select * from tb_sku where tb_sku.name=\'Name17\' ');
接下来,我们给name创建索引
create index idx_sku_name on tb_sku(name);
再次执行sql
CALL measure_query_second('select * from tb_sku where tb_sku.name=\'Name17\' ');
我们发现时间,直接变成0.0005秒。
3.2.7 索引设计原则
1) 最左前缀法则
如果索引关联了多列(联合索引),要遵守最左前缀法则,最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。
- 。sql
show index from tb_user; -- 符合最左原则,走了索引 explain select * from tb_user where profession='Engineer' and age=30 and status='1'; -- 符合最左原则,走了索引 explain select * from tb_user where profession='Engineer' and age=30 ; -- 符合最左原则,走了索引 explain select * from tb_user where profession='Engineer'; -- 没有从最左列开始,直接开始全表扫描 explain select * from tb_user where age=30; -- 没有从最左列开始,直接开始全表扫描 explain select * from tb_user where status='1'; -- 中间跳跃了一列,虽然走了索引。但是status的索引失效 explain select * from tb_user where profession='Engineer' and status='1'; -- 思考题。下列的查询是否走索引。 explain select * from tb_user where age=30 and status='1' and profession='Engineer' ; -- 答案是使用了。并且是全部使用。这个和放的位置无关。跟查询条件是否存在相关;
联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效。可以用>=或者<=来规避索引失效问题。
首先,我们查看tb_user
sqlshow index from tb_user;
sqlexplain select * from tb_user where profession='Engineer' and age>29 and status='1';
然后修改成
sqlexplain select * from tb_user where profession='Engineer' and age>=29 and status='1';
2) 索引失效情况
在索引列上进行运算操作,索引将失效。如:
explain select * from tb_user where substring(phone, 10, 2) = '15';
sqlexplain select * from tb_user where substring(phone, 10, 1) = '9';
索引会失效
字符串类型字段使用时,不加引号,索引将失效。如:
explain select * from tb_user where phone = 17799990015;
,此处phone的值没有加引号sqlexplain select * from tb_user where phone = 1234567890;
模糊查询中,如果仅仅是尾部模糊匹配,索引不会是失效;如果是头部模糊匹配,索引失效。如:
explain select * from tb_user where profession like '%工程';
,前后都有 % 也会失效。用 or 分割开的条件,如果 or 其中一个条件的列没有索引,那么涉及的索引都不会被用到。
sql-- 下面这两个,都不会使用索引 explain select * from tb_user where id= 10 or age = 23; explain select * from tb_user where phone ='1234567890' or age = 23; -- 这个就会使用索引 。因为or两边的条件都有索引 explain select * from tb_user where name='Jack' or phone='0123456789';
如果 MySQL 评估使用索引比全表更慢,则不使用索引。
3) SQL提示
是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
例如,使用索引: explain select * from tb_user use index(idx_user_pro) where profession="软件工程";
不使用哪个索引: explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程";
必须使用哪个索引: explain select * from tb_user force index(idx_user_pro) where profession="软件工程";
use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force就是无论如何都强制使用该索引。
4) 覆盖索引
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select *。
explain 中 extra 字段含义: using index condition
:查找使用了索引,但是需要回表查询数据 using where; using index;
:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询
如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;如果在辅助索引中找聚集索引,如select id, name from xxx where name='xxx';
,也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询;如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name='xxx';
所以尽量不要用select *
,容易出现回表查询,降低效率,除非有联合索引包含了所有字段
面试题:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案: select id, username, password from tb_user where username='itcast';
解:给username和password字段建立联合索引,则不需要回表查询,直接覆盖索引
5) 前缀索引
当字段类型为字符串(varchar, text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率,此时可以只降字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
语法:create index idx_xxxx on table_name(columnn(n));
前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。 求选择性公式:
select count(distinct email) / count(*) from tb_user;
select count(distinct substring(email, 1, 5)) / count(*) from tb_user;
show index 里面的sub_part可以看到接取的长度
6) 单列索引和联合索引
单列索引:即一个索引只包含单个列 联合索引:即一个索引包含了多个列
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
单列索引情况: explain select id, phone, name from tb_user where phone = '17799990010' and name = '韩信';
这句只会用到phone索引字段
注意事项
- 多条件联合查询时,MySQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询
7) 总结
- 针对于数据量较大,且查询比较频繁的表建立索引
- 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高
- 如果是字符串类型的字段,字段长度较长,可以针对于字段的特点,建立前缀索引
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价就越大,会影响增删改的效率
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询
3.3 SQL优化
1) 插入数据
普通插入:
- 采用批量插入(一次插入的数据不建议超过1000条)
- 手动提交事务
- 主键顺序插入
如果是大批量插入,比如几百万的数据??: 如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令插入。
# 客户端连接服务端时,加上参数 --local-infile(这一行在bash/cmd界面输入)
mysql --local-infile -u root -p
# 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
select @@local_infile;
# 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table 'tb_user' fields terminated by ',' lines terminated by '\n';
2) 主键优化
数据组织方式:在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(Index organized table, IOT)。
页分裂:页可以为空,也可以填充一般,也可以填充100%,每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。
页合并:当删除一行记录时,实际上记录并没有被物理删除 ,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。当页中删除的记录到达 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前后)看看是否可以将这两个页合并以优化空间使用。
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或创建索引时指定
文字说明不够清晰明了,具体可以看视频里的PPT演示过程:https://www.bilibili.com/video/BV1Kr4y1i7ru?p=90
主键设计原则:
- 满足业务需求的情况下,尽量降低主键的长度
- 插入数据时,尽量选择顺序插入,选择使用 AUTO_INCREMENT 自增主键
- 尽量不要使用 UUID 做主键或者是其他的自然主键,如身份证号
- 业务操作时,避免对主键的修改
3) Order by优化
①.Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
②.Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
案例
explain select id,age,phone from tb_user order by age;
这里使用的都是using filesort。效率不高
这里我们添加了索引
create index idx_user_age_phone on tb_user(age,phone);
再次执行排序
explain select id,age,phone from tb_user order by age,phone;
我们可以看到extra后面写了using index
注意事项
如果order by字段全部使用升序排序或者降序排序,则都会走索引,但是如果一个字段升序排序,另一个字段降序排序,则不会走索引,explain的extra信息显示的是Using index, Using filesort
,如果要优化掉Using filesort,则需要另外再创建一个索引,如:create index idx_user_age_phone_ad on tb_user(age asc, phone desc);
,此时使用select id, age, phone from tb_user order by age asc, phone desc;
会全部走索引。
下图为创建两种不同索引的索引结构。
总结:
- 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则
- 尽量使用覆盖索引
- 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)
- 如果不可避免出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)
4) Group by
- 在分组操作时,可以通过索引来提高效率
- 分组操作时,索引的使用也是满足最左前缀法则的
如索引为idx_user_pro_age_stat
,则句式可以是select ... where profession order by age
,这样也符合最左前缀法则
案例
#删除掉目前的联合索引idx user pro_age_sta
drop index idx_user_age_phone on tb_user;
show index from tb_user;
这里只有一条索引了,防止索引对测试进行影响。
#执行分组操作,根据profession字段分组
explain select profession , count(*) from tb_user group by profession ;
创建联合索引
#创建索引
Create index idx_user_pro_age_sta on tb_user(profession , age , status);
#执行分组操作,根据profession字段分组
explain select profession ,count(*)from tb_user group by profession;
我们在进行测试
#执行分组操作,根据profession字段分组
explain select profession , count(*)from tb_user group by profession, age;
这里我们发现,满足最左前缀法则,还是走的索引。
explain select age ,count(*)from tb_user group by age;
这里是有临时表的。性能还是很低的
5) limit优化
常见的问题如limit 2000000, 10
,此时需要 MySQL 排序前2000000条记录,但仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化方案:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化
例如:
-- 此语句耗时很长
select * from tb_sku limit 9000000, 10;
-- 通过覆盖索引加快速度,直接通过主键索引进行排序及查询
select id from tb_sku order by id limit 9000000, 10;
-- 下面的语句是错误的,因为 MySQL 不支持 in 里面使用 limit
-- select * from tb_sku where id in (select id from tb_sku order by id limit 9000000, 10);
-- 通过连表查询即可实现第一句的效果,并且能达到第二句的速度
select * from tb_sku as s, (select id from tb_sku order by id limit 9000000, 10) as a where s.id = a.id;
6) Count(*)优化
MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高(前提是不适用where);
InnoDB 在执行 count(*) 时,需要把数据一行一行地从引擎里面读出来,然后累计计数。
优化方案:自己计数,如创建key-value表存储在内存或硬盘,或者是用redis
count的几种用法:
- 如果count函数的参数(count里面写的那个字段)不是NULL(字段值不为NULL),累计值就加一,最后返回累计值
- 用法:count(*)、count(主键)、count(字段)、count(1)
- count(主键)跟count(*)一样,因为主键不能为空;count(字段)只计算字段值不为NULL的行;count(1)引擎会为每行添加一个1,然后就count这个1,返回结果也跟count(*)一样;count(null)返回0
各种用法的性能:
- count(主键):InnoDB引擎会遍历整张表,把每行的主键id值都取出来,返回给服务层,服务层拿到主键后,直接按行进行累加(主键不可能为空)
- count(字段):没有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加;有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加
- count(1):InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一层,放一个数字 1 进去,直接按行进行累加
- count(*):InnoDB 引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加
按效率排序:count(字段) < count(主键) < count(1) < count(*),所以尽量使用 count(*)
7) update优化(避免行锁升级为表锁)
InnoDB 的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。
如以下两条语句:
update student set no = '123' where id = 1;
,这句由于id有主键索引,所以只会锁这一行;
update student set no = '123' where name = 'test';
,这句由于name没有索引,所以会把整张表都锁住进行数据更新,解决方法是给name字段添加索引
3.4 视图/存储过程/触发器
3.4.1 视图
简介
视图(View)是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的。
创建
CREATE [OR REPLACE] VIEW 视图名称(列名列表)] AS SELECT语句 [WITH [CASCADED | LOCAL]CHECK OPTION ]
查询
- 查看创建视图语句:
SHOW CREATE VIEW 视图名称
- 查看视图数据:
SELECT * FROM 视图名称…
;
- 查看创建视图语句:
修改
- 方式一:
CREATE [OR REPLACE] VIEW 视图名称(列名列表) AS SELECT语句 [ WITH [CASCADED|LOCAL] CHECK OPTION]
- 方式二:
ALTER VIEW 视图名称[(列名列表)] AS SELECT语句[WITH[CASCADED|LOCAL]CHECK OPTION]
- 方式一:
删除
DROP VIEW [IF EXISTS] 视图名称 [,视图名称]
准备数据
-- auto-generated definition
create table students
(
student_id int not null comment '主键'
primary key,
student_name varchar(50) null comment '学生姓名',
student_number char(3) null comment '学号',
constraint student_number
unique (student_number)
);
INSERT INTO mytest.students (student_id, student_name, student_number) VALUES (1, '张三', '201');
INSERT INTO mytest.students (student_id, student_name, student_number) VALUES (2, '李四', '202');
INSERT INTO mytest.students (student_id, student_name, student_number) VALUES (3, '王五', '203');
INSERT INTO mytest.students (student_id, student_name, student_number) VALUES (4, '翠花', '204');
INSERT INTO mytest.students (student_id, student_name, student_number) VALUES (5, '小妖怪', '205');
创建一个视图
create or replace view stu_v_1 as select student_id as id ,student_name as name from students where student_id <= 10;
其他测试
show create view stu_v_1;
select * from mytest.stu_v_1;
视图的检查选项
当使用WITH CHECK OPTION子句创建视图时,MySQL会通过视图检查正在更改的每个行,例如 插入,更新,删除,以使其符合视图的定义。MySQL允许基于另一个视图创建视图,它还会检查依赖视图中的规则以保持一致性。为了确定检查的范围,mysql提供了两个选项:CASCADED
和 LOCAL
,默认值为 CASCADED
。
create or replace view stu_v_2 as select student_id as id ,student_name as name from students where student_id <= 10 with cascaded check option ;
select * from stu_v_2;
insert into stu_v_2 value (6,'tom');
-- 这行数据是执行不成功的。因为有校验检查的
insert into stu_v_2 value (30,'tom1');
CASCADED
原先数据为
运行一下代码。
create or replace view stu_v1 as select student_id as id ,student_name as name from students where student_id >=10 ;
-- 插入成功,因为id是符合要求的
insert into stu_v1 value (7,'tom');
-- 插入成功,因为id是不校验的
insert into stu_v1 value (19,'tom');
create or replace view stu_v2 as select id,name from stu_v1 where id <= 30 with cascaded check option ;
-- 插入成功,虽然校验 但是 id>=10 且 id <=30
insert into stu_v2 value (17,'tom');
-- 插入不成功 。虽然满足 stu_v2的校验 。但是cascaded是级联的。还要校验 stu_v1的设置
insert into stu_v2 value (9,'tom');
-- 插入失败 。两个条件都不满足
insert into stu_v2 value (47,'tom');
create or replace view stu_v3 as select id,name from stu_v2 where id <10;
-- 插入失败,不满足stu_v1的要求
insert into stu_v3 value (8,'tom');
-- 插入成功,虽然不满足stu_v3的要求。但是不校验
insert into stu_v3 value (21,'tom');
LOCAL
本地的条件也会检查,还会向上检查。在向上找的时候,就要看是否上面开了检查选项,如果没开就不检查。和 CASCADED 的区别就是 CASCADED 不管上面开没开检查选项都会进行检查。
他会递归的检查依赖视图是否存在local check option。如果存在,则校验。如果不存在,则不校验
create or replace view v1 as select student_id as id ,student_name as name from students where student_id <=15 ;
-- 插入成功,因为id是符合要求的
insert into v1 value (6,'tom');
-- 插入成功,因为id是不校验的
insert into v1 value (16,'tom');
create or replace view v2 as select id,name from v1 where id >=10 with local check option ;
-- 插入成功,虽然校验 但是 id>=10 且 id <=30
insert into v2 value (13,'tom');
-- 插入成功,只检验v2的要求
insert into v2 value (17,'tom');
create or replace view v3 as select id,name from v2 where id <20;
-- 插入成功
insert into v3 value (14,'tom');
-- 插入成功,虽然不满足v3的要求。但是不校验。对于v2的条件是满足的。v1则是不校验
insert into v3 value (21,'tom');
-- 插入失败,不满足v2的条件
insert into v3 value (8,'tom');
视图的更新
要使视图可更新,视图中的行与基础表中的行之间必须存在一对一的关系。如果视图包含以下任何一项,则该视图不可更新:
- 聚合函数或窗口函数(SUM()、MIN()、MAX()、COUNT()等)
- DISTINCT
- GROUP BY
- HAVING
- UNION 或者 UNION ALL
为啥使用视图?
- 视图不仅可以简化用户对数据的理解,也可以简化他们的操作。那些被经常使用的查询可以被定义为视图,从而使得用户不必为以后的操作。每次指定全部的条件。
- 数据库可以授权,但不能授权到数据库特定行和特定的列上。通过视图用户只能查询和修改他们所能见到的数据
3.4.2 存储过程
简介
存储过程是事先经过编译并存储在数据库中的一段 SQL语句的集合,调用存储过程可以简化应用开发人员的很多工作,减少数据在数据库和应用服务器之间的传输,对于提高数据处理的效率是有好处的。
存储过程思想上很简单,就是数据库 SOL语言层面的代码封装与重用。
优点
- 封装,复用
- 可以接收参数,也可以返回数据
- 减少网络交互,效率提升
使用
创建
sqlCREATE PROCEDURE 存储过程名称([ 参数列表 ]) BEGIN -- SQL语句 END;
案例代码
sqlcreate procedure p1() begin select count(*) from students; end; call p1;
注意: 在命令行中,执行创建存储过程的SQL时,需要通过关键字 delimiter 指定SQL语句的结束符,
调用
sqlCALL 名称([参数]);
查看
sqlSELECT * FROM INFORMATION_SCHEMA.ROUTINES WHERE ROUTINE_SCHEMA='mytest'; -- 查询指定数据库的存储过程及状态信息 SHOW CREATE PROCEDURE 存储过程名称; -- 查询某个存储过程的定义
删除
sqldrop procedure if exists p1;
系统变量
是MySQL服务器提供,不是用户定义的,属于服务器层面。分为全局变量(GLOBAL)、会话变量(SESSION)
查看系统变量
SHOW [ SESSION |GLOBAL ] VARIABLES
SHOW [SESSION|GLOBAL] VARIABLES LIKE '';
-- 可以通过LIKE模糊匹配方式查找变量
SELECT @@[SESSION|GLOBAL]系统变量名;
-- 查看所有系统变量
-- 查看指定变量的值
运行一下代码
show global variables;
大概有几百条变量
可以使用一下sql
show session variables ;
show session variables like "auto%";
select @@autocommit;
select @@session.autocommit;
select @@global.autocommit;
设置系统变量
SET [SESSION|GLOBAL] 系统变量名=值
SET @@[SESSION|GLOBAL] 系统变量名=值;
用户定义变量
是用户根据需要自己定义的变量,用户变量不用提前声明,在用的时候直接用“@变量名”使用就可以。其作用域为当前连接。
SET @var_name = expr [, @var_name = expr] ... ;
SET @var name := expr [, @var_name := expr]... ;
SELECT @var_name := expr [, @var_name := expr]... ;
SELECT 字段名 INTO @var_name FROM 表名;
使用
-- 创建变量
set @myname='joker';
set @myage :=10;
set @mygende:='男',@myhobby='Java';
select @myname,@myage,@mygende,@myhobby;
select @mycolor :='red';
select count(*) into @mycount from tb_user;
select @mycolor,@mycount;
局部变量
是根据需要定义的在局部朱效的变量,访问之前,需要DECLARE声明。可用作存储过程内的局部变量和输入参数,局部变量的范围是在其内声明的BEGIN .. END块。
声明
sqlDECLARE 变量名 变量类型 [DEFAULT ..];
变量类型就是数据库字段类型:INT、BIGINT、CHAR、VARCHAR、DATE、TIME等
赋值
sqlSET 变量名=值; SET 变量名:=值; SELECT 字段名 INTO 变量名 FROM 表名
创建
create procedure p2()
begin
declare stu_count int default 0;
select count(*) into stu_count from students;
end;
call p2();
参数
类型 | 含义 | 备注 |
---|---|---|
IN | 该类参数作为输入,也就是需要调用时传入值 | 默认 |
OUT | 该类参数作为输出,也就是该参数可以作为返回值 | |
INOUT | 既可以作为输入参数,也可以作为输出参数 |
if--else
create procedure p4(in score int,out result varchar(10))
begin
if score>=85 then
set result:='优秀';
elseif score >= 60 then
set result:= '良好';
else
set result:='不及格';
end if;
end;
call p4(58,@result);
select @result;
case
CASE case_value
WHEN whel valuel THEN statement list1
[ WHEN when value2 THEN statement list 2]...
[ ELSE statement list ]
END CASE;
while
WHILE 条件 DO
SQL逻辑...
END WHILE;
计算从1累加到n的
create procedure p7(in score int ,out result int)
begin
set result:=0;
while score>0 do
set result:= result+ score;
set score:=score-1;
end while;
end;
call p7(3,@result);
select @result;
repeat
repeat是有条件的循环控制语句,当满足条件的时候退出循环。具体语法为:
REPEAT
SQL逻辑..
UNTIL 条件
END REPEAT;
案例
create procedure p8(in score int )
begin
declare result int default 0;
repeat
set result:=result+score;
set score:=score-1;
until score<=0
end repeat;
select result;
end;
call p8(11)
looper
LOOP 实现简单的循环,如果不在SQL逻辑中增加退出循环的条件,可以用其来实现简单的死循环。LOOP可以配合一下两个语句使用:
- LEAVE:配合循环使用,退出循环。
- ITERATE:必须用在循环中,作用是跳过当前循环剩下的语句,直接进入下一次循环。
[begin_label:] LOOP
SQL逻辑.
END LOOP [end label];
案例
create procedure p9(in score int )
begin
declare result int default 0;
sum:loop
if score<=0 then
leave sum;
end if;
set result:=result+score;
set score:=score-1;
end loop sum;
select result;
end;
call p9(10)
跳过奇数
create procedure p10(in score int )
begin
declare result int default 0;
sum:loop
if score<=0 then
leave sum;
end if;
if score %2=1 then
set score:=score-1;
iterate sum;
end if;
set result:=result+score;
set score:=score-1;
end loop sum;
select result;
end;
call p10(10);
游标
游标(CURSOR)是用来存储查询结果集的数据类型,在存储过程和函数中可以使用游标对结果集进行循环的处理。游标的使用包括游标的声明、OPEN、FETCH和CLOSE,其语法分别如下。
- 声明游标:
DECLARE 游标名称 CURSOR FOR 查询语句
- 打开游标:
OPEN 游标名称
- 获取游标记录:
FETCH 游标名称INTO变量[变量]
条件处理程序:
条件处理程序(Handler)可以用来定义在流程控制结构执行过程中遇到问题时相应的处理步骤。具体语法为:
DECLARE handler action HANDLER FOR condition value L condition value]..statement
handler_action CONTINUE:继续执行当前程序
EXIT:终止执行当前程序
condition_value :
- SQLSTATE sqlstate_value:状态码,如02000
- SQLWARNING:所有以01开头的SQLSTATE代码的简写
- NOT FOUND:所有以02开头的SQLSTATE代码的简写
- SQLEXCEPTION:所有没有被SQLWARNING或NOT FOUND捕获的SQLSTATE代码的简写
例子:
NOTE:要先声明普通变量,再申请游标。
要求: 根据传入的参数uage,来查询用户表tb_user中,所有的用户年龄小于等于uage的用户姓名(name)和专业(profession),并将用户的姓名和专业插入到所创建的一张新表(id,name,profession)中。
create procedure p11(in uage int)
begin
declare uname varchar(100);
decLare upro varchar(100);
-- 声明游标,存储查询结果
declare u_cursor cursor for select name,profession from tb_user where age <= uage;
-- 当 条件处理程序的处理的状态码为02000的时候,就会退出。
declare exit handler for SQLSTATE '02000' close u_cursor;
-- 创建表
drop table if exists tb_user_pro;
create table if not exists tb_user_pro(
id int primary key auto_increment,
name varchar(100),
profession varchar(100)
);
-- 开启游标
open u_cursor;
--
while true do
-- 从游标数据中获取数据
fetch u_cursor into uname,upro;
insert into tb_user_pro values(null,uname,upro);
end while;
close u_cursor;
end;
call p11(40);
这里还可以简写
create procedure p12(in uage int)
begin
declare uname varchar(100);
decLare upro varchar(100);
-- 声明游标,存储查询结果
declare u_cursor cursor for select name,profession from tb_user where age <= uage;
-- 当 条件处理程序的处理的状态码为02000的时候,就会退出。
declare exit handler for not found close u_cursor;
-- 创建表
drop table if exists tb_user_pro;
create table if not exists tb_user_pro(
id int primary key auto_increment,
name varchar(100),
profession varchar(100)
);
-- 开启游标
open u_cursor;
--
while true do
-- 从游标数据中获取数据
fetch u_cursor into uname,upro;
insert into tb_user_pro values(null,uname,upro);
end while;
close u_cursor;
end;
call p12(40);
3.4.3 存储函数
存储函数是有返回值的存储过程,存储函数的参数只能是IN类型的。具体语法如下:
CREATE FUNCNON 存储函数名称 ([ 参数列表 ])
RETURNS type [characteristic ...]
BEGIN
-- SQL语句
RETURN ..
END ;
characteristic说明:
- DETERMINISTIC:相同的输入参数总是产生相同的结果
- NO SQL:不包含 SQL语句。
- READS SOL DATA:包含读取数据的语句,但不包含写入数据的语句,
案例
create function fun1(n int)
returns int deterministic
begin
declare total int default 0;
while n>0 do
set total:=total+n;
set n:=n-1;
end while;
return total;
end;
select fun1(10);
3.4.4 触发器
介绍
触发器是与表有关的数据库对象,指在insert/update/delete之前或之后,触发并执行触发器中定义的SQL语句集合。触发器的这种特性可以协助应用在数据库端确保数据的完整性,日志记录,数据校验等操作。 使用别名OLD和NEW来引用触发器中发生变化的记录内容,这与其他的数据库是相似的。现在触发器还只支持行级触发(比如说 一条语句影响了 5 行 则会被触发 5 次),不支持语句级触发(比如说 一条语句影响了 5 行 则会被触发 1 次)。
触发器类型 | NEW 和 OLD |
---|---|
INSERT | NEW 表示将要或者已经新增的数据 |
UPDATE | OLD表示修改之前的数据,NEW表示将要或已经修改后的数据 |
DELETE | OLD表示将要或者已经删除的数据 |
语法
创建
CREATE TRIGGER trigger name
BEFORE/AFTER INSERT/UPDATE/DELETE
ON tbl_name FOR EACH ROW -- 行级触发器
BEGIN
trigger_stmt ;
END;
查看
SHOW TRIGGERS
删除
DROP TRIGGER [schema name.] trigger name ;
--如果没有指定 schema name,默认为当前数据库,
案例
-- 创建表
-- 通过触发器记录 tb_user 表的数据变更日志,
-- 将变更日志插入到日志表user_logs中,包含增加,修改,删除;
create table user_logs(
id int(11) not null auto_increment,
operation varchar(20) not null comment '操作类型, insert/update/delete',
operate_time datetime not null comment '操作时间',
operate_id int(11) not null comment '操作的ID',
operate_params varchar(500)comment '操作参数',
primary key(`id`)
);
-- 创建触发器
create trigger tb_user_insert_trigger
after insert on tb_user for each row
begin
insert into user_logs(operation,operate_id,operate_time,operate_params) values
('insert',new.id,now(),concat('插入的数据内容为:id=',new.id,', name=',NEW.name,' ,phone=',NEW.phone,' ,email=',NEW.email));
end;
use mytest;
insert into tb_user (name, phone, email, profession, age, gender, status)
values ('joker1','15651771520','203462009@qq.com','软件工程',24,'F','1');
-- 创建修改的触发器
create trigger tb_user_update_trigger
after update on tb_user for each row
begin
insert into user_logs(operation,operate_id,operate_time,operate_params) values
('update',new.id,now(),concat('更新之前的数据为:id=',old.id,', name=',old.name,' ,phone=',old.phone,' ,email=',old.email,
' | 修改的数据内容为:id=',new.id,', name=',NEW.name,' ,phone=',NEW.phone,' ,email=',NEW.email));
end;
update tb_user set phone='嘿嘿嘿' ,age=32 where name='joker1';
update tb_user set tb_user.profession='软件工程' where id<=5;
-- 创建删除逻辑触发器
create trigger tb_user_delete_trigger
after delete on tb_user for each row
begin
insert into user_logs(operation,operate_id,operate_time,operate_params) values
('delete',OLD.id,now(),concat('插入的数据内容为:id=',OLD.id,', name=',OLD.name,' ,phone=',OLD.phone,' ,email=',OLD.email));
end;
delete from tb_user where name='joker1';
-- 查看触发器
show triggers ;
-- 删除触发器
drop trigger tb_user_insert_trigger;
3.5 锁
锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。
NOTE : 针对事物才有加锁的意义。
分类:MySQL中的锁,按照锁的粒度分,分为以下三类:
- 全局锁:锁定数据库中的所有表。
- 表级锁:每次操作锁住整张表。
- 行级锁:每次操作锁住对应的行数据。
全局锁:
全局锁就是对整个数据库 实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。
其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。
表锁:
表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、InnoDB、BDB等存储引擎中。
对于表级锁,主要分为以下三类:
表锁
:对于表锁,分为两类:- **表共享读锁(read lock)**所有的事物都只能读(当前加锁的客户端也只能读,不能写),不能写
- 表独占写锁(write lock),对当前加锁的客户端,可读可写,对于其他的客户端,不可读也不可写。
读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞其他客户端的写。
语法:
加锁: lock tables 表名... read/write。
释放锁: unlock tables/客户端断开连接。
元数据锁
(meta data lock,MDL),MDL加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与DDL冲突,保证读写的正确性。在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作的时候,加MDL写锁(排他)。
sqlselect object_type,object_schema,object_name,lock_type,lock_duration from performance_schema.metadata_locks;
意向锁
: 为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。 一个客户端对某一行加上了行锁,那么系统也会对其加上一个意向锁,当别的客户端来想要对其加上表锁时,便会检查意向锁是否兼容,若是不兼容,便会阻塞直到意向锁释放。意向锁兼容性:
- 意向共享锁(IS):与表锁共享锁(read)兼容,与表锁排它锁(write)互斥。
- 意向排他锁(lX):与表锁共享锁(read)及排它锁(write)都互斥。意向锁之间不会互斥。
首先得在一个表中开启事务,添加锁
然后再另一个客户端中查询锁
sqlselect object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_locks;
行锁:
行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在InnoDB存储引擎中。 InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:
行锁(
Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在RC(read commit )、RR(repeat read)隔离级别下都支持。间隙锁
(GapLock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。比如说 两个临近叶子节点为 15 23,那么间隙就是指 [15 , 23],锁的是这个间隙。临键锁
(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。在RR隔离级别下支持。
InnoDB实现了以下两种类型的行锁:
- 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。
- 排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他锁。
行锁类型
SQL | 行锁类型 | 说明 |
---|---|---|
insert | 排他锁 | 自动加锁 |
update | 排他锁 | 自动加锁 |
delete | 排他锁 | 自动加锁 |
select | 不加任何锁 | |
select lock in share mode | 排他锁 | 需要手动在SELECT之后加LOCK IN SHARE MODE |
select for update | 排他锁 | 需要手动在SELECT之后加FOR UPDATE |
行锁 - 演示
默认情况下,InnoDB在REPEATABLE READ事务隔离级别运行,InnoDB使用next-key 锁进行搜索和索引扫描,以防止幻读。
- 针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。
- InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,此时就会升级为表锁。
间隙锁/临键锁-演示
默认情况下,InnoDB在REPEATABLE READ事务隔离级别运行,InnoDB使用next-key 锁进行搜索和索引扫描,以防止幻读。
- 索引上的等值查询(唯一索引),给不存在的记录加锁时,优化为间隙锁。
- 索引上的等值查询(普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。
- 索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。
注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用间隙锁。
3.6 InnoDB引擎
3.6.1 逻辑存储结构
表空间(ibd文件),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。
段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点,索引段即为B+树的非叶子节点。段用来管理多个Extent(区)。
区,表空间的单元结构,每个区的大小为1M。默认情况下,InnoDB存储引擎页大小为16K,即一个区中一共有64个连续的页。
页,是InnoDB存储引擎磁盘管理的最小单元,每个页的大小默认为16KB。为了保证页的连续性,InnoDB存储引擎每从磁盘申请4-5个区。一页包含若干行。
行,InnoDB存储引擎数据是按进行存放的。
3.6.2 架构
MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构,
内存结构
磁盘结构
后台线程
输入一下这条sql。就可以看见后台进程状况
show engine innodb status ;
3.6.3 事务原理
事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
- 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。
- 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。
- 隔离性(lsolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。
- 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。
redolog-持久性
重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。
该日志文件由两部分组成:重做日志缓冲(redologbuffer)以及重做日志文件(redolog file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中,用于在刷新脏页到磁盘,发生错误时,进行数据恢复使用。
undo log(原子性)
回滚日志,用于记录数据被修改前的信息,作用包含两个:提供回滚 和 MVCC(多版本并发控制)。
undo log和redolog记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undolog中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的update记录。当执行rolback时,就可以从undolog中的逻辑记录读取到相应的内容。
并进行回滚。
- Undo log销毁: undolog在事务执行时产生,事务提交时,并不会立即删除undolog,因为这些日志可能还用于MVCC,
- Undo log存储: undolog采用段的方式进行管理和记录,存放在前面介绍的 rollback segment 回滚段中,内部包含1024个undolog segment.
3.6.4 MVCC
首先学习一下mvcc的前缀知识,隐藏字段,undo_log,readview
当前读
读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如: select .. lock in share mode(共享锁),
select ...for update、update、insert、delete(排他锁)都是一种当前读。
快照读
简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。
- Read Committed:每次select,都生成一个快照读。
- Repeatable Read:开启事务后第一个select语句才是快照读的地方。
- Serializable:快照读会退化为当前读。
MVCC
全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现
MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undolog日志、readView。
隐藏字段
- DB_ROW_ID:占6个字节,⽤于标识⼀条记录(不⼀定存在,没有PK或者UQ的时候才有)
- DB_TRX_ID:占6个字节,其值为inndb层的事务ID(必存在),主要用于Mvcc
- DB_ROLL_PTR:占7个字节,其值为回滚指针(必存在)
怎么查看当前事务的trx_id
-- 开启一个新的事物
BEGIN;
-- 查询用户表
select * from user ;
-- 查看当前事务的ID
SELECT trx_id FROM information_schema.INNODB_TRX;
-- 插入一个新的数据
insert into user( id,name, age, email) values(7,'joker',234,'203462009@qq.com');
-- 查看当前事务的ID
SELECT trx_id FROM information_schema.INNODB_TRX;
-- 提交事物
commit ;
undo log
- 回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。
- 当insert的时候,产生的undolog日志只在回滚时需要,在事务提交后,可被立即删除。
- 而update、delete的时候,产生的undolog日志不仅在回滚时需要,在快照读时也需要,不会立即被删除,
版本链
readview
ReadView(读视图)是 快照读 SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务(未提交的)id。 ReadView中包含了四个核心字段:
字段 | 含义 |
---|---|
m_ids | 当前活跃的事务ID集合 |
min_trx_id | 最小活跃事务ID |
max_trx_id | 预分配事务ID,当前最大事务ID+1(因为事务ID是自增的) |
creator_trx_id | ReadView创建者的事务ID |
访问的数据
不同的隔离级别,生成Readview的时机不同
- READ COMMITTED:在事务中每一次执行快照读时生成Readview。
- REPEATABE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。
举例
3.7 MySQL管理
自带数据库
- information_schema
- mysql
- sys
- performance_schema
数据库 | 含义 |
---|---|
mysql | 存储MySQL服务器正常运行所需要的各种信息(时区、主从、用户、限等) |
information_schema | 提供了访问数据库元数据的各种表和视图,包含数据库、表、字段类型及访问权限等 |
performance_schema | 为MySQL服务器运行时状态提供了一个底层监控功能,主要用于收集数据库服务器性能参数 |
sys | 包含了一系列方便 DBA 和开发人员利用 performance_schema性能数据库进行性能调优和诊断的视图 |
常用工具
执行脚本文件
mysqldump -uroot -proot -hlocalhost -P3306 mockito > 1.sql
包含建表语句